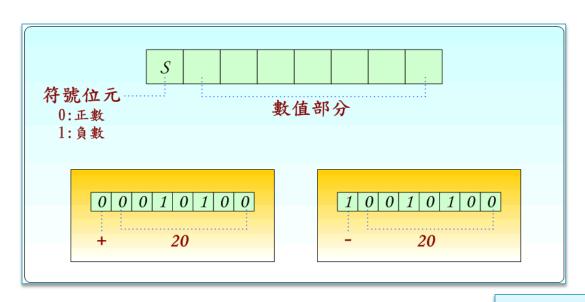
正負數表示法

- 之前所介紹的二進位數值表示法,可以表達正整數,但對於負整數卻無法表達。為了讓電腦也可以表達負數,數學家發明了許多的數值表示法,並且很多都可以透過邏輯電路加以實作,三種最常見的正負數表示法分別如下
 - ●『帶符號大小』
 - ●『1's補數』
 - 『2' s補數』
 - 這三種表示法都必須事先固定資料的位元長度
 - 現代電腦使用的是『2' s補數』表示法。
 - 三種表示法的對照表如下:
 - (其中2's補數的負數表示法為1's補數負數+1)

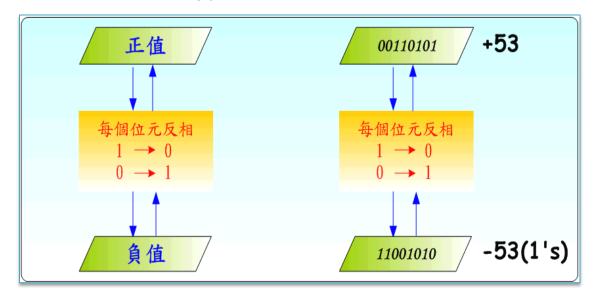
正負數表示法


十	進位	带符號大小	1's補數	2' s補數	
4	⊦ 7	0111	0111	0111	
+6		0110	0110	0110	
+5		0101	0101	0101	
+4		0100	0100	0100	
+3		0011	0011	0011	
+2		0010	0010	0010	
+1		0001	0001	0001	
0	+0	0000	0000	0000	
	-0	1000	1111	0000	
-1		1001	1110	1 111	
-2		1010	1101	1 1 1 0	
-3		1011	1100	1 01	
-4		1100	1011	1 00	
-5		1101	1010	1)11	
-6		1110	1001	1 110	
-7		1111	1000	1)01	
-8		無法表示	無法表示	1)00	

以4位元表示正負整 數值的三種表示法 對照表

> 最左位為**1**一定 是負整數

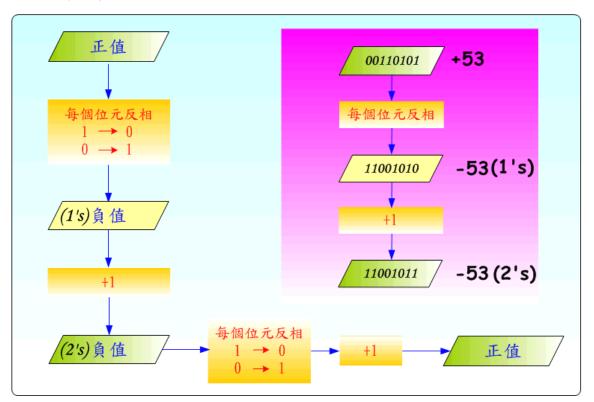
正負數表示法--帶符號大小


- **帶符號大小**的正負數表示法,顧名思義,就是有一個位元用 來表示該數值為正數還是負數。這個位元通常位於最左邊
 - 使用n個位元來表達正負整數時,數值的表達範圍就只剩n-1個位元可以使用,所以正整數的表達範圍是+0~+(2n-1-1)
 - 負整數的表達範圍是-(2n-1-1)~-0
 - 明顯地,對於0而言,使用帶符號大小表示0的時候,+0與-0是不一樣的。
- 以8位元來表示正負整數時,若採用帶符號大小來表示,方法則如下圖所列:

8位元的带符號表示法

正負數表示法 1'S補數

- 1's補數(1's complement)和帶符號大小表示法的原理不太相同,在1's補數中,如果要表達負數,則必須先求得正整數,然後再將每個位元加以反相(inverse),就可以得到負整數了
 - 所謂反相,其實就是將該位元由1變0或由0變1,如圖範例:



1' S補數的正負轉換

- 在圖中,我們可以很明顯看到,1'S補數的轉換機制是可逆的
- 換句話說,當您看到一個負的1'S補數二進位數字時(最左位元必為1),如果想要知道該數值代表多少,同樣可以透過反相求出該負整數的絕對值。

正負數表示法 2's補數

● 2' s補數 (2' s complement) 是一個最完美的正負二進位整數的表示法,它是基於1' s補數演變而來 (同樣必須限制表示的位元寬度),也就是當我們要將一個二進位整數變號時,只需要先將其1' s補數求出,然後再加1,就可以得到2' s補數了,如圖所示:

2's補數的正負轉換

正負數表示法 2's補數

- 2' S補數的轉換機制對於『正整數轉負整數』或『負整數轉正整數』所使用的方法都是一樣的
 - 例如,當您看到2'S補數二進位負整數11001011₂時,也可以 先將其反相(使用1'S補數的方法),然後再加1,就可以得 到該負整數的絕對值了。

3 2's補數

	带符號大小	1's補數	2's補數
採用	非個人電腦採用	非個人電腦採用	個人電腦採用
優點	1.最左邊位元可判定正負數。 2.對人來說非常簡單,容易理解。	 1.最左邊位元可判定正負數。 2.轉換機制是可逆的。 3.可以透過邏輯電路輕鬆設計完成反相。 	1. 最左邊位元可判定正負數。 2. +0與-0表示法相同。 3. 表達範圍是 +(2 ⁿ⁻¹ -1) ~ -2 ⁿ⁻¹ 。 4. 轉換機制是可逆的。 5. 可以輕易地使用邏輯電路實作相關應用電路。
缺點	1.不容易使用邏輯電路實作相關應用電路。 2.表達範圍是+0~+(2n-1-1)、 -(2n-1-1)~-0。 3.+0與-0表示方式不同。	1.必須限制表示的位元數。 2.表達範圍是+0~+(2 ⁿ⁻¹ -1)、 -(2 ⁿ⁻¹ -1)~-0。 3.+0與-0表示方式不同。	必須限制表示的位元 數。

正負整數表示法比較表